OBSERVATIONS & RECOMMENDATIONS

After reviewing data collected from **Nubanusit Lake**, **Nelson**, the program coordinators have made the following observations and recommendations.

We congratulate your group on sampling twice this year! However, we encourage your group to conduct more sampling events in the future. Typically, we recommend that monitoring groups sample three times per summer (once in **June**, **July**, and **August**). We understand that the number of sampling events you decide to conduct per summer will depend upon volunteer availability, and your group's goals and funding availability. However, with a limited amount of data it is difficult to determine accurate and representative water quality trends. Since weather patterns and activity in the watershed can change throughout the summer, from year to year, and even from hour to hour during a rain event, it is a good idea to sample the lake at least once per month during the summer.

If you are having difficulty finding volunteers to help sample or to travel to one of the laboratories, please call the VLAP Coordinator and DES will help you work out an arrangement.

A Weed Watcher training was conducted at **Nubanusit Lake** during **2009**. Volunteers were trained to survey the lake once a month from **May** through **September**. To survey, volunteers slowly boat, or even snorkel, around the perimeter of the lake or pond and any islands it may contain. Using the materials provided in the Weed Watcher kit, volunteers look for any species that are suspicious. After a trip or two around the lake or pond, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers immediately send a specimen to DES for identification. If the plant specimen is an exotic species, a biologist will visit the site to determine the extent of the problem and to formulate a management plan to control the nuisance infestation. Remember that early detection is the key to controlling the spread of exotic plants.

Volunteers from your lake participated in the Lake Host™ Program this year. The Lake Host™ Program is funded through DES and Federal grants. The program was developed in 2002 by NH LAKES and NHDES to educate and prevent boaters from spreading exotic aquatic plants to lakes in New Hampshire. Since then, the number of participating lakes and volunteers has doubled, the number of boats inspected has tripled, and the number of "saves" (exotic plants discovered) has increased from four in 2002 to a total of 297 in 2009. The program is invaluable in educating boaters and protecting NH's waterbodies from exotic aquatic plant infestations, thereby preventing recreational hazards, property value decline, aquatic ecosystem decline, aesthetic issues, and saving costly remediation efforts. Lake Host™ staff discovered the following aquatic vegetation entering or leaving your lake in 2009:

Native milfoil (native)

Great work! We encourage volunteers to continue participating in the Lake HostTM Program to protect the future of your lake.

FIGURE INTERPRETATION

CHLOROPHYLL-A

Figure 1 and Table 1: Figure 1 in Appendix A shows the historical and current year chlorophyll-a concentration in the water column. Table 1 in Appendix B lists the maximum, minimum, and mean concentration for each sampling year that the lake has been monitored through VLAP.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Algae (also known as phytoplankton) are typically microscopic, chlorophyll producing plants that are naturally occurring in lake ecosystems. The chlorophyll-a concentration measured in the water gives biologists an estimation of the algal concentration or lake productivity. The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³.

The current year data (the top graph) show that the chlorophyll-a concentration *increased slightly* from **June** to **August**.

The historical data (the bottom graph) show that the **2009** chlorophyll-a mean is *much less than* the state median and is *slightly less than* the similar lake median. For more information on the similar lake median, refer to Appendix F.

Overall, the statistical analysis of the historical data (the bottom graph) show that the mean annual chlorophyll-a concentration has **not significantly changed** (neither *increased* nor *decreased*) since monitoring began. Specifically, the mean chlorophyll-a concentration has remained **relatively stable**, **ranging between approximately 0.87 and 2.64 mg/m³** since **1991**. Please refer to Appendix E for a detailed statistical analysis explanation and data print-out.

While algae are naturally present in all lakes and ponds, an excessive or increasing amount of any type is not welcomed. In freshwater lakes and ponds, phosphorus is the nutrient that algae typically depend upon for growth in New Hampshire lakes. Algal concentrations may increase as nonpoint sources of phosphorus from the watershed increase, or as in-lake phosphorus sources increase. Therefore, it is extremely important for volunteer monitors to continually educate all watershed residents about management practices that can be implemented to minimize phosphorus loading to surface waters.

TRANSPARENCY

Figure 2 and Tables 3a and 3b: Figure 2 in Appendix A shows the historical and current year data for transparency with and without the use of a viewscope. Table 3a in Appendix B lists the maximum, minimum and mean transparency data without the use of a viewscope and Table 3b lists the maximum, minimum and mean transparency data with the use of a viewscope for each year that the lake has been monitored through VLAP.

Volunteer monitors use the Secchi disk, a 20 cm disk with alternating black and white quadrants, to measure how far a person can see into the water. Transparency, a measure of water clarity, can be affected by the amount of algae and sediment in the water, as well as the natural lake color of the water. **The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.**

The current year data (the top graph) show that the viewscope in-lake transparency *decreased* from **June** to **August**.

It is important to note that as the chlorophyll concentration *increased* at the deep spot as the summer progressed, the transparency *decreased*. We typically expect this *inverse* relationship in lakes. As the amount of algal cells in the water increases, the depth to which one can see into the water column typically decreases, and vice versa.

It is important to note that viewscope transparency data are not compared to a New Hampshire median or similar lake median. This is because lake transparency with the use of a viewscope has not been historically measured by DES. At some point in the future, the New Hampshire and similar lake medians for viewscope transparency will be calculated and added to the appropriate graphs.

Overall, the statistical analysis of the historical data (the bottom graph) shows that the mean annual in-lake viewscope transparency has **not significantly changed** (either *increased* or *decreased*) since monitoring began. Specifically, the mean transparency has remained **relatively stable**, **ranging between approximately 10.25 and 14.25 meters** since **1997**. Please refer to Appendix E for the statistical analysis explanation and data print-out.

Typically, high intensity rainfall causes sediment-laden stormwater runoff to flow into surface waters, thus increasing turbidity and decreasing clarity. Efforts to stabilize stream banks, lake and pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the lake or pond should continue on an annual basis. Guides to best management practices that can be implemented to reduce, and possibly even eliminate, nonpoint source pollutants, are available from DES upon request.

TOTAL PHOSPHORUS

Figure 3 and Table 8: The graphs in Figure 3 in Appendix A show the amount of epilimnetic (upper layer) phosphorus and hypolimnetic (lower layer) phosphorus; the inset graphs show current year data. Table 8 in Appendix B lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the lake has been sampled through VLAP.

Phosphorus is typically the limiting nutrient for vascular aquatic plant and algae growth in New Hampshire's lakes and ponds. Excessive phosphorus in a lake or pond can lead to increased plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion (the top inset graph) show that the phosphorus concentration *decreased slightly* from **June** to **August**.

The historical data show that the **2009** mean epilimnetic phosphorus concentration is *much less than* the state median and is *approximately equal to* the similar lake median. Refer to Appendix F for more information about the similar lake median.

The current year data for the hypolimnion (the bottom inset graph) show that the phosphorus concentration *remained stable* from **June** to **August**.

The historical data show that the **2009** mean hypolimnetic phosphorus concentration is *much less than* the state median and is *slightly greater than* the similar lake median. Please refer to Appendix F for more information about the similar lake median.

Overall, the statistical analysis of the historical data shows that the epilimnetic (upper layer) and hypolimnetic (lower layer) phosphorus concentration has **not significantly changed** since monitoring began. Specifically, the mean annual epilimnetic phosphorus concentration has **fluctuated between approximately 3 and 11 ug/L**, and the mean annual hypolimnetic phosphorus concentration has **fluctuated between approximately 3 and 13 ug/L** since **1991**. Please refer to Appendix E for the detailed statistical analysis explanation and data print-out.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about the watershed sources of phosphorus and how excessive phosphorus loading can negatively impact the ecology and the recreational, economical, and ecological value of lakes and ponds.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 in Appendix B lists the current and historical phytoplankton and/or cyanobacteria observed in the lake. Specifically, this table lists the three most dominant phytoplankton and/or cyanobacteria observed in the sample and their relative abundance in the sample.

The dominant phytoplankton and/or cyanobacteria observed in the **August** sample were **Tabellaria** (**Diatom**), **Asterionella** (**Diatom**), and **Peridinium** (**Dinoflagellate**).

Phytoplankton populations undergo a natural succession during the growing season. Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession. Diatoms and golden-brown

algae populations are typical in New Hampshire's less productive lakes and ponds.

> Table 4: pH

Table 4 in Appendix B presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 typically limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the state surface waters are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean pH at the deep spot this year ranged from **5.59** in the hypolimnion to **5.83** in the epilimnion, which means that the water is **slightly acidic**.

Due to the state's abundance of granite bedrock in the state and acid deposition received from snowmelt, rainfall, and atmospheric particulates, there is little that can be feasibly done to effectively increase lake pH.

> Table 5: Acid Neutralizing Capacity

Table 5 in Appendix B presents the current year and historical epilimnetic ANC for each year the lake has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.8 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation about ANC, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean acid neutralizing capacity (ANC) of the epilimnion (upper layer) was **0.2 mg/L**, which is **much less than** the state median. In addition, this indicates that the lake is **extremely vulnerable** to acidic inputs.

Table 6: Conductivity

Table 6 in Appendix B presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current, which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column. The median conductivity value for New Hampshire's lakes and ponds is **40.0 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean annual epilimnetic conductivity at the deep spot this year was **16.09 uMhos/cm**, which is *much less than* the state median.

The conductivity in the lake is **stable** and **low**. Typically conductivity levels greater than 100 uMhos/cm indicate the influence of pollutant sources associated with human activities. These sources include septic system leachate, agricultural runoff, and road runoff which contains road salt during the spring snow-melt. We hope this trend continues!

It is possible that de-icing materials applied to nearby roadways during the winter months may be influencing the conductivity in the lake. In New Hampshire, the most commonly used de-icing material is salt (sodium chloride).

A limited amount of chloride sampling was conducted during **2009**. Please refer to the discussion of **Table 13** for more information.

Therefore, we recommend that the **epilimnion** (upper layer) be sampled for chloride next year. This additional sampling may help us identify what areas of the watershed are contributing to the increasing in-lake conductivity.

Please note that the DES Limnology Center in Concord is able to conduct chloride analyses, free of charge. As a reminder, it is best to conduct chloride sampling in the spring as the snow is melting and during rain events.

> Table 8: Total Phosphorus

Table 8 in Appendix B presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The phosphorus concentration in the **Hancock Landing** samples was *low* this year, which is good news. However, we recommend that

your monitoring group sample the major tributaries to the lake during snow-melt and periodically during rainstorms to determine if the phosphorus concentration is *elevated* in the tributaries during these times. Typically, the majority of nutrient loading to a lake occurs in the spring during snow-melt and during intense rainstorms that cause soil erosion and surface runoff and within the watershed.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator.

Table 9 and Table 10: Dissolved Oxygen and Temperature Data
Table 9 in Appendix B shows the dissolved oxygen/temperature
profile(s) collected during 2009. Table 10 in Appendix B shows the
historical and current year dissolved oxygen concentration in the
hypolimnion (lower layer). The presence of sufficient amounts of
dissolved oxygen in the water column is vital to fish and amphibians
and bottom-dwelling organisms. Please refer to the "Chemical
Monitoring Parameters" section of this report for a more detailed
explanation.

The dissolved oxygen concentration was **high** at all deep spot depths sampled at the lake on the **August** sampling event. As thermally stratified lakes age, and as the summer progresses, oxygen typically becomes **depleted** in the hypolimnion (lower layer) by bacterial decomposition. Specifically, the loss of oxygen in the hypolimnion results primarily from biological organisms using oxygen to break down organic matter, both in the water column and particularly at the bottom of the lake or pond where the water meets the sediment. The **high** oxygen level in the hypolimnion is a sign of the lake's overall good health. We hope this continues!

The dissolved oxygen concentration was greater than **100 percent** saturation between **10** and **12** meters at the deep spot on the **August** sampling event. Wave action from wind can also dissolve atmospheric oxygen into the upper layers of the water column. Layers of algae can also increase the dissolved oxygen in the water column, since oxygen is a by-product of photosynthesis. Considering that the depth of sunlight penetration into the water column was approximately **10.1** meters on this sampling event, as shown by the Secchi disk transparency depth, and that the metalimnion, the layer of rapid decrease in water temperature and increase in water density where algae typically congregate, was located between approximately **8** and **16** meters, we suspect that an abundance of algae in the

metalimnion caused the oxygen super-saturation.

> Table 11: Turbidity

Table 11 in Appendix B lists the current year and historical data for in-lake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

The tributary and deep spot turbidity was *relatively low* this year, which is good news.

However, we recommend that your group sample the pond and any surface water runoff areas during significant rain events to determine if stormwater runoff contributes turbidity and phosphorus to the pond.

For a detailed explanation on how to conduct rain event sampling, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at

http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator.

> Table 12: Bacteria (E.coli)

Table 12 in Appendix B lists the current year and historical data for bacteria (E.coli) testing. E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage **may** be present. If sewage is present in the water, potentially harmful disease-causing organisms **may** also be present.

The *E. coli* concentration was **very low** at **Hancock Landing** sampled on the **8/10/2009** and **8/25/2009** sampling events. Specifically, each result was **5 counts or less**, which is *much less than* the state standard of 406 counts per 100 mL for recreational surface waters that are not designated public beaches and 88 counts per 100 mL for surface waters that are designated public beaches.

The **Hancock Landing** *E. coli* concentrations was *elevated* on the **6/25/2009** sampling event. However, the concentration of **220** counts per 100 mL *was not greater than* the state standard of 406 counts per 100 mL for recreational waters that are not designated public beaches.

Weather records indicate 1.0 inch of rainfall occurred 24-72 hours

prior to sampling. We suspect that the rain event washed bacterialaden stormwater into the lake from the surrounding area.

If you are concerned about *E. coli* levels at this station, your monitoring group should conduct rain event sampling and bracket sampling in this area to help us determine the bacteria source.

For a detailed explanation on how to conduct rain event sampling and stream surveys, please refer to the 2002 VLAP Annual Report special topic article, which is posted on the VLAP website at http://www.des.nh.gov/organization/divisions/water/wmb/vlap/categories/publications.htm, or contact the VLAP Coordinator.

> Table 13: Chloride

Table 13 in Appendix B lists the current year and the historical data for chloride sampling. The chloride ion (Cl-) is found naturally in some surfacewaters and groundwaters and in high concentrations in seawater. Research has shown that elevated chloride levels can be toxic to freshwater aquatic life. In order to protect freshwater aquatic life in New Hampshire, the state has adopted **acute and chronic** chloride criteria of **860 and 230 mg/L** respectively. The chloride content in New Hampshire lakes is naturally low, generally less than 2 mg/L in surface waters located in remote areas away from habitation. Higher values are generally associated with salted highways and, to a lesser extent, with septic inputs. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The **Hancock Landing and Outlet in Stream** were sampled for chloride on the **June and August** sampling events. The results were < 5 mg/L, which is *much less than* the state acute and chronic chloride criteria and what we would normally expect to see in undisturbed New Hampshire surface waters.

> Table 14: Current Year Biological and Chemical Raw Data

Table 14 in Appendix B lists the most current sampling year results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw," meaning unprocessed, data. The results are sorted by station, depth, and then parameter.

> Table 15: Station Table

As of the spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To

facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past and are most familiar with, an EMD station name also exists for each VLAP sampling location. Table 15 in Appendix B identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your lake, the biologist conducted a sampling procedures assessment audit for your monitoring group. Specifically, the biologist observed the performance of your monitoring group and completed an assessment audit sheet to document the volunteer monitors' ability to follow the proper field sampling procedures, as outlined in the VLAP Monitor's Field Manual. This assessment is used to identify any aspects of sample collection in which volunteer monitors failed to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group did an *excellent* job collecting samples on the annual biologist visit this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the biologist to provide additional training. Keep up the good work!

Sample Receipt Checklist:

Each time your monitoring group dropped off samples at the laboratory this summer, the laboratory staff completed a sample receipt checklist to assess and document if your group followed proper sampling techniques when collecting the samples. The purpose of the sample receipt checklist is to minimize, and hopefully eliminate, improper sampling techniques.

Overall, the sample receipt checklist showed that your monitoring group did an *excellent* job when collecting samples and submitting them to the laboratory this year! Specifically, the members of your monitoring group followed the proper field sampling procedures and there was no need for the laboratory staff to contact your group with questions, and no samples were rejected for analysis.

USEFUL RESOURCES

Acid Deposition Impacting New Hampshire's Ecosystems, DES fact sheet ARD-32, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/factsheets/ard/documents/ard-32.pdf.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, DES Booklet WD-03-42, (603) 271-2975 or

www.des.nh.gov/organization/commissioner/pip/publications/wd/docu ments/wd-03-42.pdf.

Low Impact Development Hydrologic Analysis. Manual prepared by Prince George's County, Maryland, Department of Environmental Resources. July 1999. To access this document, visit www.epa.gov/owow/nps/lid_hydr.pdf or call the EPA Water Resource Center at (202) 566-1736.

Low Impact Development: Taking Steps to Protect New Hampshire's Surface Waters, DES fact sheet WD-WMB-17, (603) 271-2975 or www.des.nh.gov/organization/commissioner/pip/factsheets/wmb/documents/wmb-17.pdf.

NH Stormwater Management Manual Volume 1: Stormwater and Antidegradation, DES fact sheet WD-08-20A, (603) 271-2975 or http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20a.pdf

NH Stormwater Management Manual Volume 2: Post-Construction Best Management Practices Selection and Design, DES fact sheet WD-08-20B, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20b.pdf

NH Stormwater Management Manual Volume 3: Erosion and Sediment Controls During Construction, DES fact sheet WD-08-20C, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/publications/wd/doc uments/wd-08-20c.pdf

Vegetation Maintenance Within the Protected Shoreland, DES fact sheet WD-SP-5, (603) 271-2975 or

http://des.nh.gov/organization/commissioner/pip/factsheets/sp/documents/sp-5.pdf